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Abstract 

Given a bigraded k-algebra S = $ (u “) SC,,,), (u,u) E N x N, (k a field), one attaches to 

it the so-called diagonal subalgebra Sd L $(,,., SC~,~). This notion generalizes the concept of 
Segre product of graded algebras. The classical situation has S = k[Soo,,Sco,i& whereby taking 
generators of Sci,o) and S(c,i) yields a closed embedding Proj (S) it Pi-’ x p;-‘, for suitable 
n,r; the resulting generators of S(i,i) make ,!?A isomorphic to the homogeneous coordinate ring 
of the image of Proj (S) under the Segre map lpi-’ x P;-’ -+ I$-i. 

The main results of this paper deal with the situation where S is the Rees algebra of a 
homogeneous ideal generated by polynomials in a fixed degree. In this framework, S, is a 

standard graded algebra which, in some case, can be seen as the homogeneous coordinate ring of 
certain rational varieties embedded in projective space. This includes some examples of rational 
surfaces in @ and toric varieties in F!$. The main concern is then with the normality and the 
Cohen-Macaulayness of &. One can describe the integral closure of Sd explicitly in terms of 
the given ideal and show that normality carries from S to Sd. In contrast to normality, Cohen- 
Macaulayness fails to behave similarly, even in the case of the Segre product of Cohen-Macaulay 

graded algebras. The problem is rather puzzling, but one is able to treat a few interesting 
classes of ideals under which the corresponding Rees algebras yield Cohen-Macaulay diagonal 
subalgebras. These classes include complete intersections and determinantal ideals generated by 
the maximal minors of a generic matrix. @ 1998 Elsevier Science B.V. 
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1. Introduction 

Let k be an algebraically closed field and let P” = Pi denote projective s-space 

over k. Given subvarieties V c pn-’ and W c p’-*, one can look at the image of 

V x W under the classical Segre embedding lPn-’ x Pr-’ -+ Pnr-‘, the so-called 

Segre product of V and W. Much has been said about the finer arithmetical properties 

of the homogeneous coordinate ring of the Segre product (cf. [7, 12, 231). 

The product V x W is only a special case of a subvariety of P-l x P’-’ which 

is defined by a bihomogeneous ideal J in the natural bigradation of k[X,T], where 

X = {Xi ,..., X,}, T = {Tl ,..., T,.}. Th ese varieties are classically known as corre- 

spondences and their importance in Intersection Theory cannot be exagerated. To our 

knowledge, however, a systematic study of the finer arithmetical properties of the ho- 

mogeneous coordinate ring of the image of such a subvariety in Pnr-’ has never been 

fully taken up. 

If S = k[X,T]/J is the bihomogeneous coordinate ring of a correspondence, SA 

denotes the corresponding diagonal subalgebra. For our purpose, k may well be an 

arbitrary field. 

In the first section one collects general facts about the diagonal subalgebra S4 of a 

bigraded k-algebra S. Namely, one compares the two algebras in terms of presentation, 

dimension and multiplicity. 

The main feature is about the Cohen-Macaulayness of 8~. In the case of Segre prod- 

ucts this is a classic by Chow [7], so one would expect some interesting obstructions. 

The result of Chow’s was recast in a different form and translated into modern numer- 

ical conditions by Sttickrad-Vogel [23] and Goto-Watanabe [12]. In this work, one 

uses certain filtrations on k[X,T] to reduce the problem to a special situation where the 

diagonal subalgebra becomes actually a Segre product and then uses the criterion for 

Cohen-Macaulayness in this case. The first main point is the description of the initial 

ideal of J under the aforementioned filtration. Such a description has been recently ob- 

tained in [14], in the case of the Rees algebra of an ideal generated by a d-sequence, 

and subsequently, in [20], for the class of ideals possessing a set of generators forming 

a quadratic sequence and in [24], for ideals of the principal class. 

Next one is able to express the integral closure of SA in terms of the integral closure 

of S, thereby showing that normality carries over from S to S4. This result also follows 

from the existence of a Reynolds operator from S to SA. One notices here a certain 

“cylinder phenomenon” related to both the normality and the Cohen-Macaulayness. 

Actually, this is at the root of the original considerations of Chow, in the case of 

Segre products, though he did not explicitly put it this way. 

Among the important correspondences in algebraic geometry, blowing-up varieties 

dominate. The subsequent section will be focused on the standard bigraded Rees alge- 

bra B(I) of a homogeneous ideal I c k[X] = k[& , . . . ,X,1 generated by polynomials of 

the same degree d. In this case, the diagonal subalgebra Sd of 95?(Z) can be identified 

with the homogeneous coordinate ring k[XZd] of the special fiber of the blow-up (Rees 

algebra) of the non-saturated ideal (X)Z. A very first non-trivial example of such a 
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diagonal subalgebra occurs when I = (X:,X:, . . . , Xrd), Y 5 n. In this case, Sd is the 

coordinate ring of the toric variety in PmP1 with parametric equations { Kj := XidX,} 

where i = 1 . , . . ,Y and j = 1,. . . ,n. Another interesting example is the case when 

n = 3 and Z is the defining ideal of a set of points in P2 which is the intersection of 

two curves of the same degree d. A suitable embedding of the blowing up of P* at 

these points yields a surface in P5 whose homogeneous coordinate ring is the diagonal 

subalgebra Sd of the Rees algebra S of I. Actually, the present work grew up from 

the desire to better understand the results of [lo]. One is to believe that the alge- 

braic approach via the diagonal of the Rees algebra may throw further light on the 

study not only of projective embeddings of rational surfaces obtained by blowing up 

a set of points in P2 (cf. [9, 11, 17]), but also of projective embeddings of rational 

n-folds obtained, more generally, by blowing up P” along some special smooth 

subvariety. 

In this section one first deals with the problem of computing the integral closure 

(Sd ) of Sd, thus obtaining that 

where F is the integral closure of Is and k(XZ) the field of fractions of the algebra 

k[Wd]. This ought to give a handy criterion, at least in the case of an ideal generated 

by monomials, of computing the integral closure of Sd, since the normalized powers 

F are within reach by the convex hull criterion. 

The core of this section deals with the case where I is generated by a regular 

sequence of r homogeneous polynomials of the same degree. In this case one can 

establish an explicit presentation of S, as well as compute its Hilbert function. The 

main result here says that Sd is a Cohen-Macaulay ring if (r - 1)d < iz, while failing 

to be so if (r- l)d>n. 

The proof for the Cohen-Macaulayness is based on the aforementioned reduction to 

Segre products, while for the non-Cohen-Macaulayness one shows that the h-vector has 

a negative coefficient. Here, a crucial point is an appropriate formula for the Hilbert 

series. 

As seen before, the case r = 2 is general enough to include some relevant geometric 

examples. If r = 2 and n = 2,3, one sees that Sd is the homogeneous coordinate ring of 

a divisor on a rational normal scroll. Hence, by using a classical result of Buchsbaum 

and Eisenbud, it is possible to derive a minimal free resolution for S,. This resolution 

has also been given by Holay in his thesis (see [ 181) by methods which bear some 

relation to ours. 

Looking at this resolution, one can see that Sd is Cohen-Macaulay if and only if 

d < n. For arbitrary r > 2 one is led to the conjecture that Sd is Cohen-Macaulay if 

and only if (d - 1)r I n. 

The remaining portion deals with the Cohen-Macaulayness of the diagonal subal- 

gebra of .!%(I) for certain class of straightening closed ideals in polynomial algebras 

with straightening law, which includes the ideal generated by the maximal minors of 
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a generic matrix. The proof makes heavy use of the “dCvissage” to Segre products 

recorded earlier and of a substantial amount of combinatorics. 

2. The diagonal subalgebra 

Let S = CB(, ,,..., u.)EZm % ,..., d be a multigraded ring, where SC,, ,...,*,) denotes the 

graded piece of S of degree (#I,. . . , u,). 

The central concept of this paper is the following. 

Definition. The diagonal subring of S is the subring 

Clearly, Sd is a Z-graded ring in a natural way. Also, if S is an algebra over a field 

k, Sd is a k-subalgebra of S. 

The simplest case of a diagonal subalgebra occurs when S = RI @ R:! is the tensor 

product of two graded k-algebras RI and Rz. Then S has a natural bigraded structure 

and its diagonal subalgebra Sd is the Segre product Rp&Rz of RI and R2. 
The classical situation has S a standard bigraded algebra, i.e. S is a bigraded 

k-algebra which admits a finite set of k-algebra generators of degrees (1,0) and (0,l). 

Then S, is also standard graded. Say, if S = k[xl,. . . ,x,,, tl,. . . , tr] for some elements 

xi and tj with deg xi = (1,O) and deg ti = (0, 1 ), then 

Geometrically, S stood for the bihomogeneous coordinate ring of a correspondence in 

the product P”- ’ x P’-’ and Sd for the homogeneous coordinate ring of the image 

of the correspondence under the Segre embedding P”‘-’ x P’-’ L) P-l. 

2.1. Presentation 

Henceforth we assume that S is a standard bigraded k-algebra; in this subsection we 

indicate how to get a presentation of the diagonal subalgebra Sd in terms of that of S. 

Let us consider an algebra presentation S-A/J with A = k[X, T] a bigraded poly- 

nomial ring in two sets of mutually independent indeterminates X and T and J a 

bihomogeneous ideal of A, i.e. an ideal homogeneous, separately, in the X-variables 

and in the T-variables 

Ad = k[&Tj 1 1 5 

Let U = (Uij) be an 

presentation: 

AA -WJl/WJ), 

Let X = {Xl ,..., Xn} and T = {Tl,..., T,.}. Then 

i 2 n, 1 5 j 2 r]. 

n x r matrix of indeterminates. Mapping U, to XiTj yields a 
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where 12(U) denotes the ideal generated by the 2-minors of U (Zz(U) = 0 if r = 1). 

By letting 

Jd := @&4)> 
U>O 

it is clear that 

To find the image of Jd in R[U]/&(U), one needs a set of generators of JA. 

Lemma 2.1. Let S 21 A/J be a standard bigraded algebra as above. Suppose that J 

is generated by the homogeneous polynomials FI , . . . ,F, with deg Z$ = (ai,bi). Let 
ci = max{ai, bi}. Then JA is generated by the elements of the form &M where h4 is 

a monomial of degree (ci - ai,c; - bi), i = 1,. . . ,s. 

Proof. Let f be an arbitrary element of & with deg f = (u,u). Then f E Cf=, 

I$A(u_-a,,u_b,). Since A is generated by A(l,o) and A(o,l), one has 

A+a+b,) = A(,-,,,-b,~(,-,~,.-,~). 

This yields the conclusion. 0 

Note that the monomials M of degree (ci - ai, ci - bi) are monomials either in X 

with degree ci - ai or in T with degree ci - bi, depending on whether ci is equal to bi 

or to Ui, respectively. 

Let now F be a homogeneous element of JA. First note that F is a linear combination 

of monomials of bidegree of the form (e, e), for some e > 1. Such a monomial can 

be expressed as a product of monomials of the form XiTj. Replacing all occurring 

products Xic by Uij yields a preimage G of F in k[U]. Note that F E Jd, we have 

several preimages, but they all coincide modulo 12(U). A presentation of SA will be 

given by 

where S is the ideal of k[U] generated by 12(U) and a set of preimages of the gener- 

ators of Jd. 

Example 2.2. Let S = k[X, T]/Zz( V) where V is the matrix 

X,d . . . xp 
> Tl . . . T,. ’ 

Then S is a presentation of the Rees algebra of the ideal (xt,. . . ,Xt) c k[X] = 

k[& , . . . ,X,,], r 5 n. By Lemma 2.1, JA is generated by the elements of the form 

(TdTj - XjdTi)M(T), 1 5 i < j 5 r, where M(T) is a monomial of degree d - 1 

in k[T]. By letting Ui := Uir,..., Ui,, one sees that a preimage of such an element 
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in k[U] is the element UijM(Ui) - UjiM(Uj). Therefore, S is the ideal generated by 

12(U) and these elements. In particular, if n = r = 2, then 

and one has 

SA = k[U1/(UllU22 - u12u21, u,4 - u,4-‘u12, 

Ud-‘u22 _ ud-2 
21 ,I u,“,,...> u2&’ - Up2). 

2.2. Dimension and multiplicity 

Let S be a standard bigraded k-algebra. A bihomogeneous prime ideal p of S is 

relevant if p does not contain Sci,n and S(O,J). Note that the biprojective spectrum 

BiProj (S) of S is the set of the relevant bihomogeneous prime ideals of S. It is easy 

to see that dim S/p 2 2 for any relevant prime ideal @. Following [19] we define 

rel. dim S := 
1 if BiProj (S) = 8, 

max{dim S/a 1 go E BiProj (S)} if BiProj (S) # 8, 

and call it the relevant dimension of S. Note that rel. dim S = dim S if every associated 

prime of S is relevant. Let 

Hs(u,u) := dimk S(U,C, 

be the Hilbert function of the bigraded algebra S. 

It was proved by van der Waerden [25] that for large enough u and v 

where aij are integers. This has been extended to the case when S is a standard 

bigraded algebra over an artinian ring by Bhattacharaya in [ 11. Recently, Katz et al. [ 19, 

Theorem 2.21 showed that if BiProj (S) # 0, the total degree of the above polynomial 

is equal to rel.dimS - 2 and aij > 0 for i + j = rel. dims - 2. 

The result of Katz et al. still holds if BiProj (S) = 8. In this case, it is easy to check 

that ScU,“) = 0 for u and u large enough, hence the above polynomial is zero and has 

degree -1. 

We will denote the number aij by es(i,j). 
The Hilbert function of the diagonal subalgebra Sd can be expressed in terms of the 

Hilbert function of S as follows: 
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Let d = rel. dims. If u is large enough, one has 

O<i+j<d-2 

= (j+z_2F) Udp2+lower degree terms 

C&’ es(i, d - 2 - i)(dT2) = 

(d - 2)! 1 ude2 + lower degree terms. 

Proposition 2.3. Let S be a standard bigruded k-algebra and d = rel. dim S 2 1. Then 

(i) dim(S4) = d - 1. 

(ii) rf d > 2, e(Sd) = CL;’ es(i,d - 2 - i)(dT2). 

Proof. If d = 1, then Hs,(u) = 0 for u large enough, hence dim(S4) = 0. Let d > 2. 

One needs to show that d -2 is the degree of the above polynomial. Since BiProj (S) # 

8, this follows from the facts that es(i, d - 2 - i) 2 0 for i = 0,. . . , d - 2 and that one 

of them is not zero. q 

Example 2.4 (Froberg and Hoa [8, Proposition 41). Let RI, R2 be two standard 

graded k-algebras with dimension dim(Rl) = dl and dim(R2) = d2. Let S be the 

standard bigraded algebra RI C& RI. 
If dl 2 1 and d2 > 1, one has 

Mu, u) = HR, (~)HR~(u) 

=4R:)e(R2)(d, r 1) (d2” 1) + terms of total degree < dl + d2 - 2 

for u and v large enough. Since e(R1) > 0 and e(R2) > 0, the degree of the above 

polynomial is d 1 + d2 - 2. Hence d = rel. dim S = d, + d2 2 2 and 

es(i,d-2-i)= C 0 if i # dl - 1, 

e(Rl)e(Rz) if i = dl - 1. 

Since the Segre product R~c&R~ is isomorphic to SA, we get 

(i) dimRl&&R2 = dl +d2 - 1. 

(ii) e(Rlc&R2) = e(R1)e(R2)(d’i?;2). 
Ifdl=Oord2=O,thendimRiaR:!=O. 

Remark 2.5. (ii) gives a simple proof of the well-known formula for the multiplicity 

of the ideal 12(U) generated by the 2-minors of the n x r matrix U of indeterminates, 

since k[U]/ZZ(U) is isomorphic to the Segre product of two polynomial rings RI and 
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R2 with dimRi = n and dimR2 = r. Namely, one has 

ewJl/12w)) = (" 5 '). 

2.3. Cohen-Macaulayness 

An ancestor of the Cohen-Macaulayness of the diagonal subalgebra was taken up 

by Chow [7] who studied the problem for the Segre products of two Cohen-Macaulay 

standard graded algebras. This result was later improved by Stikkrad-Vogel [23] for 

algebras of dimension 2 2. There are also other results on the Cohen-Macaulayness 

of Segre products in large classes of graded algebras [8, 151. 

We will see that certain filtrations of a standard bigraded algebra may reduce the 

problem of the Cohen-Macaulayness of the diagonal subalgebra to the one of Segre 

products. 

The following preliminaries are mainly borrowed from [14] (cf. also [20]). 

For any filtration % of ideals of a commutative ring R, gr F(R) denotes the associated 

graded ring of R with respect to %. 

Let S = A/J be a standard bigraded k-algebra, where A = k[X,T] is a polynomial 

ring in two sets of indeterminates X and T and J a bihomogeneous ideal of A. Set 

T = {Tl,..., rr}. Consider an F+Y+’ -gradation on A by setting 

A(,,,, ,...., n,) := WIJ: . . . T:. 

Let 3 be a term order on the monoid kJrf’, i.e. a total order with the property 

a 3 b implies a+c + b+c for all c E kY+‘. 

Such a term order induces a filtration 9 on A with %a := $,,+,Ab. It is clear that 

gr s(A) N A. The filtration % imposes a filtration on S which we also denote by %. 

Let J* be the ideal generated by the initial forms of J, then 

gr p(S)-A/J*. 

As a N’+‘-graded ideal of A, J* is also a bigraded ideal of A. Therefore, gr~(S) is 

a bigraded algebra, and, as such, has a diagonal subalgebra gr _&S)d. 

On the other hand, the above lP1 -gradation on A induces a N’gradation on Ad 

by setting 

(&)(a I,..., a,) := A(,,+...+,_, ,,_._I 07). 

Note that this corresponds to an embedding of N’ in Nr+l, Consider the restriction of 

the term order + on the additive monoid N’: 

(al,..., ar)k(bi,..., b,) if (ai+...+a,,ai ,..., @-)$(bi+...+b,,bi ,..., b,). 

Similarly as above, this term order induces a filtration %A on Ad with gr flA((Ad) =Ad. 

%A will stand for the corresponding filtration on SA = Ad/Jd. 
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Proposition 2.6. Let S = AJJ be a standard bigraded k-algebra and 9 and FA 
filtrations on S and Sd as above. Then 

Proof. Let (Jd )* be the ideal generated by the initial forms of the element of Jd with 

respect to the filtration %A on Ad. Then 

On the other hand, one has 

gr y(S)d = (A/J* )A = A&J* )A 

Therefore, it suffices to show that (Jd )* = (J*)d. 

Let f be an arbitrary element of Jd and let f * be the initial form off with respect to 

%A. Write f = Cfa, where fa E J, and a is of the form (a,+...+ar,al,...,a,). Since 

%A comes from the term order 3 restricted on N’ by the embedding (ai,. . . ,a,.) + 

(al +...+a,,al , . . . ,a,), one has f * = fb where b = min{a ] fa # 0). But fb is also 

the initial form off with respect to the filtration % on A. Therefore, f* E J* fl Ad = 

(J*)d. This proves that (Jd)* C(J*)d. 

For the converse, let g be an arbitrary homogeneous element of (J* )A. Then g E Ad 

and g is the initial form of an element h E J with respect to %. Write h = C fcu+) 
with fcu,+) E J(,,,). Since the FV+’ -gradation of A is finer than the original @-gradation 

of A, g is the initial form of some element fcU,“) with respect to %. It follows that 

deg g = (u,v). Since g E AA, u = v. Hence fcu,+) E Jd. As we have seen above, g 

is also the initial form of fiU,v) with respect to the filtration %A on AA. Therefore, 

$X(44)*. q 

Corollary 2.7. If grd(S)~ is a Cohen-Macaulay ring then Sd is a Cohen-Macaulay 
ring. 

Proof. It is well known that SA is Cohen-Macaulay as soon as the associated graded 

ring gr 9A (Sd ) is Cohen-Macaulay. q 

We next explain the rough strategy of reduction to Segre products. 

By the definition of the filtration %, the initial form of any element of A is the 

product fM of a homogeneous polynomial f of k[X] and a monomial A4 of k[T]. 

Since the ideal J* is generated by such polynomials, J* is a finite intersection of 

ideals of the form (1, Tf' , . . . , TF) where I is a homogeneous ideal of k[X]. Passing to 

the diagonal, one has 

(J*)A = n(Z, Tp’, . . ., T:)A. 

Since A/(& Tp’, . . , T,?) N k[X]/I c& k[T]/(Tr’, . . . , T,!?), its diagonal subalgebra 

A d/(1, Tf ’ > . . . > T:)A is isomorphic to the Segre product k[X]/Z@,_k[T]/( Tp’, . . . , TF ) 

in which case one may apply the existing Cohen-Macaulayness criteria. 
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Finally, to go back to gr,p(S)d N AdI(J one may use the Cohen-Macaulay 

devissage invented by Eagon-Hochster [16], which we recall here in a modified form: 

Lemma 2.8. Let R be a standard graded algebra and let Qj, 1 5 j < s, be ideals of 

R satisfying the following properties: 
(i) RJQj is a Cohen-Macaulay ring of dimension d for j = 1,. . . , s. 

(ii) R/(Ql n . . . n Qj + Qj+, ) is a Cohen-Macaulay ring of dimension d - 1 for 

j=l ,...,s- 1. 

Then R/Q is a Cohen-Macaulay ring, where Q = n;=, Qj. 

Proof. Using induction we can reduce to the case s = 2. For this case, the statement 

already follows from [ 16, Proposition 181. 0 

It should be noted that in the case of diagonal subalgebras, when Q = (J*)d E 

R = Ad and Qj is of the form (Z,~~‘,...,T,?)d, then R/(Ql n ... n Qj + Qj+l) is 

the diagonal subalgebra of a graded algebra A/H where H is an ideal generated by 

polynomials of the form fM with f E k[X] and M a monomial of k[T] and, as such, 

has a decomposition into ideals of the form (I, Tp' , . . . , T: ) again. 

Surprisingly enough, one can actually carry out the above steps in some cases, 

such as for the presentation ideals of the Rees algebras of ideals generated by regular 

sequences [14] or by straightening closed ideals in the poset of an algebra with straight- 

ening law [20], where a good hold of the initial ideals is within reach. This will be 

done in the next section. 

2.4. Integral closure and normality 

In this part we will consider the integral closure 3 of a multigraded domain S and 

relate 3~ to the integral closure of S4. In the following K(S) will denote the field of 

fraction of the multigraded domain S. We first prove a basic result. 

Lemma 2.9. Let S be a P-graded domain and let M the multiplicative set of non- 

zero homogeneous elements of S. Then 
(i) The ring of fractions S, is an integrally closed P-graded domain. 

(ii) S is a P-graded subring of Sm, which is W-graded tf S is W-graded. 

Proof. It is clear that SM has a natural structure of Z”-graded ring by letting 

(SM)(~,,,.,,,~) to be the set of elements of the form s/t where s E S, t E A4 are homo- 

geneous elements such that deg(s) - deg(t) = (ui,. . , u,). It is also clear that 

S c Sr c K(S). Following [3], where the case of Z-graded domain is considered, one 

can easily prove that S, is integrally closed. Hence we get 3 c SM. By degree reason- 

ing, every homogeneous summand of an element of 3 belongs to S again. From this 

it follows that S is a B”-graded subring of S M. Finally, since S is a domain, if S is 

N” multigraded, so is S. 0 
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Proposition 2.10. Let S be a multigraded domain. Then 

(&I) = s/j n K(Sd). 

Proof. By Lemma 2.9, (Sd) is a graded ring and every homogeneous element f of 
(SA) is a fraction of two homogeneous elements of Sd. It follows that f E (,&)A. 
Since f is also integral over S, we get f ES fl (&)A = 3~. So we have proved that -_ 
(Sd ) c Sd n K(Sd ). 

For the converse, let f = C fu be an element of ??A n K(Sd ). Since f E Sd c S 

and S is Z”-graded, fu is integral over S for every U. This implies that any relation 

of integral dependence for fu over S is one for fu over Sd. Hence fu is integral over 

Sd for every U, so that f is integral over Sd. Since f E K(Sd ), one has f E (SA ) as 

wanted. 0 

Corollary 2.11. Zf the multigraded ring S is a normal domain, then so is its diagonal 
subring S,. 

This result can also be proved using the following notion which is of independent 

interest. 

A Reynolds operator of a ring extension D c C is a D-module surjection rp : B + A 
such that the composite D c C -$ D is the identity map. Clearly, a Reynolds operator 

exists if and only if D is a direct summand of C as D-modules (in which case, the 

corresponding projector is a Reynolds operator). By [ 17, Proposition 6.151 normality 

carries from C to D in a ring extension D C C which has a Reynolds operator. There- 

fore, Corollary 2.11 is a consequence of the following result which holds in a more 

general setup. 

Proposition 2.12. Let S be a multigraded k-algebra. Then the ring extension Sd c S 
has a Reynolds operator. 

Proof. Consider the subset S’ = C,+, S(U,,...,u,) c S. Clearly, S’ is a k-subspace of S 

and as such admits S, as a direct complement. However, S’ is actually an Sd-submodule 

of S, so one is done. 0 

3. Case study: Rees algebras 

We will be concerned with the Rees algebra 

3?(Z) := @ZY 

320 

of a homogeneous ideal Z generated by forms f,, . . , fr of a fixed degree d in a 

polynomial ring k[X] = k[xl, . . .,Xx]. It is clear that 

a(Z) = k[W[fit,...,f,4 ck[Xtl 
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and as a subring of the bigraded algebra k[X,t], B(Z) is naturally bigraded. Since the 

elements fj have the same degree, if we set deg Xi = (1,0) and deg fit = (0, 1 ), 
then 9(Z) becomes a standard bigraded k-algebra. Let S denote this standard bigraded 

algebra. Then S is a domain and rel. dim S = dim S = n + 1. 

One sees immediate to see that 

S(u,s) = (ZS)u+sdtS 

and, as a k-vector space, this is generated by elements of the form MN where A4 is 

a monomial of k[X] with degree u and N a product of s copies of fit. Therefore one 

has a neat description of the diagonal subalgebra of S, namely, Sd = $s,,,(ZS)S(d+l)tS, _ 
from which, it is clear that 

In the sequel, we will thus stick to the notation k[XZd] instead of SA. Note that k[XZd] 
is the special fiber of the Rees algebra of the ideal (X)Z. Finally, by Proposition 2.3, 

dimSA = n. 

3.1. Integral closure 

Let k(XZd) denote the field of fractions of k[XZd]. One has Proj(Sd) = Proj (S). 

Therefore, k(XZd) is a purely transcendental extension of k with tr.degk k(XZd) = 

dim k[X] = n. A simple calculation yields a little more, as follows. 

Proposition 3.1. (i) k(XZd) = k(Xl/XI:, . . ,X,/X)(X&) for any fixed choice of indices 
l<i<nandl<j<r. 

(ii) The extension k(X) 1 k(XZ ) d IS simple algebraic of degree d + 1, generated by 
any chosen Xi. 

(iii) The ring extension k[XZd] c k(X) is integral $ and only if the ideal Z is 
(X)-primary. 

Proof. (i) Since X,/Xi = Xl fi /Xi fi , for any 1, 1 5 1 5 n, we have an obvious 

inclusion k(Xl /Xii, . . . , &/Xi)(Xi fj) C k(XZd). The reverse inclusion follows from the 

easy equalities 

i 

&fj = (X,/X )Zfj E 4x1 /X7 . . . ,X,/xi )(Xfj) 
&fk =x/fj(fk/fj) E k(Xl/X,. . . ,&/&i)(xfj)(fk/fi) 

and from the fact that fk/fj E k(Xl/‘Xi,. . . , X,/Xi) since fk, fj are homogeneous of the 

same degree. 

(ii) Write fj = Xidfj(Xl/Xii,. . .,X,/Xi). Consider CI = fj(Xi/Xi,. . .,X,/Xi) as an 

element of the subfield k(Xl/Xi,. . . , X,/Xi). Then, Xi satisfies the algebraic equation 
yd+l - a-‘(X;:fj) over the field k(XZd). Since Xl = (X//Xi)&, for any other index 

I, 1 5 i 5 n, the claim on the generation of k(X) ) k(wd) is shown. To see that 
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the degree is exactly d + 1, one observes that, by part (iii) below - whose proof 

is independent of degree considerations - the element Xifj is transcendental over the 

subfield k(Xi /Xii, . . . , X,/Xi), hence cannot factor in k(XZd). 

(iii) If I is (X)-primary then I must contain powers of all variables X, so k[X] 

is obviously integral over k[Xld]. Conversely, if Xi satisfies an equation of integral 

dependence over k[wd] then, by reasoning with degrees, one sees that some XJj, 

hence fj itself, must be a power of Xi. 0 

In order to compute the integral closure of Sd we use the normalized Rees algebra 

B,(Z) := @w, 
S>O 

where IS denotes the integral closure of the ideal Is. It is well known that .3?,(Z) is the 

integral closure of the Rees algebra S. As such, it inherits a bigraded structure from S. 

We can also describe this graded structure. 

Lemma 3.2. L%d~> = @(u,sjE~z (F)u+sd f. 

Proof. According to Lemma 2.9 an homogeneous element of s of degree (u,s) is a 

fraction a/b where a E SC~,~J, b E SC”,,,,, and 

p-v=u, q-w=s. 

Hence one can write a/b = (ctq)/(et”) where cE(Z~)~+~~, eE(IW)“+,,,d. Thus 

a/b = (c/e)t” E 3 = @F’ 
S>O 

and one can write (c/e) = h for some h E F. But then c = he implies that h is an 

homogeneous element in IS of degree p + qd - (v + wd) = u + sd. 0 

As a corollary one gets the main result of this part, namely, the following explicit 

description of the integral closure (Sd ) of Sd. 

Theorem 3.3. Let I c k[X] be an ideal generated by homogeneous polynomials of 
jixed degree d. Let S = B(I) be the standard bigraded Rees algebra of I. Then 

(sd) N 4 (I")s(d+l) 1 s 2 01 n k(wd). 

Proof. By Proposition 2.10 



318 A. Simis et al. I Journal of Pure and Applied Algebra 125 (1998) 305-328 

where K(Sd) is the field of fraction of S,. As seen at the beginning of this section, 

K(Sd)-k(XZd). By Lemma 3.2, this isomorphism induces an isomorphism 

and one is done. 0 

Theorem 3.3 gives a handy formula for the computation of the integral closure of 

the diagonal subalgebra of S = W(Z). 

Example 3.4. Let I = (Xp,. . .,X,“) c k[X] = k[xt, . . .,X,]. Then 

Sd N k[XZd] = k[xixj’l 1 5 i < ?Z, 1 5 j < Y]. 

To compute the integral closure of this algebra one has to compute (P)s(d+i) for all 

s 2 1. It is clear that 7 = (Xi, . . . . X,)d. From this it follows that F = (xi ,..., X,)Sd. 

The vector space (Xi,. . . ,Xr)$d+lj is generated by elements of the form MN with M 

a monomial of degree s in Xl , . . .,X, and N a monomial of degree sd in Xi,. . .,X,. 

It is clear that MN can be rewritten as a product of s monomials of the form XiL, 

1 < i 5 II, where L is a monomial of degree d in Xi,. . ,X,. Hence 

k[(Zs)s(d+i)l s > 0] = k[XiLI 1 5 i < n, L a monomial of degree d in Xl,. . . ,X,]. 

Since &C = (&L/x:+’ )JCt+l E R(X$Yi , . . . ,X,/X, )(X,d+’ ) = k(wd), it is clear that 

k[XiLI 1 < i < n, L a monomial of degree d in Xi,. . . ,A’,,] C k(md). 

Therefore, applying Theorem 3.3 one gets 

(%k k[(F),(d+ljl s 2 01 f- k(md) 

N k[XiLI 1 < i 5 n, L a monomial of degree d in Xi,. . .,X,.1. 

3.2. Complete intersections 

Throughout this part, let 1 = (fi, . , fr) be an ideal generated by a regular sequence 

of r forms in k[X] = k[_,Yt,. . ,X,] of fixed degree d. 

As before, set T = {TI, . . . , T,} and A = k[X,T]. It is well known that the Rees 

algebra S = W(Z) has the presentation S = A/J, where J is the ideal generated by the 

elements Fij = fiTj - fjTi, 1 5 i < j 5 r of bidegree (d, 1). According to Lemma 

2.1, Jd is generated by the elements FijM, where M runs through the monomials of 

degree d - 1 in Tl , . . . , T,. 

Proposition 3.5. Let U = (Uij) be un n x r matrix of indeterminates. A presentation 
of SA is given by 

SA 2: k[U]/3, 
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where S is the ideal generated by the (T)(i) 2- minors of U and by the preimages 

of the generators of JA under the map Uij + XiTj. Further, if d > 2, a minimal set 
of generators of S consists of (i) (;) forms of degree two and d (dTL;‘) forms of 

degree d. 

Proof. The presentation of 84 follows from the description given in Subsection 2.1. 

Let d > 2. Since the preimages of FijM have degree d, in order to prove the second 

statement, it suffices to show that 

dim@/&(U))d =d(df_i2 ‘), 

i.e., that 

Now, since A is the Segre product of k[X] and k[T], one has 

Ha,WHs,(d)=d(dt_i; ‘). 

h,(d)= (“;~;‘)(+T’). 
The Hilbert function of SA will be computed in the next theorem, where it will be 

seen that, with R = k[X], 

The conclusion follows. 0 

Going back to the notation of Subsection 2.3, let A = k[X,T] be N’+‘-graded by 

setting 

A, a,,,a I,..., a,) := WIJ~’ . . . T:. 

The degree lexicographic term order on N I+’ induces a filtration F on A. As seen 

earlier, 9 imposes a filtration on S such that gr y(S) N A/J*, where J* denotes the 

ideal generated by the initial forms of the elements of J. It has been shown in [14] 

that 

J* = (12T2,...,ZrT,.), 

where Zj := (Fl,. . ,Fj_l), j = 2,. . . ,r. We will use this description of J* to com- 

pute the Hilbert function E&(u), the Hilbert series J’S,(Z) and to study the Cohen- 

Macaulayness of SA. 
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Theorem 3.6. Let I c k[& , . . . ,X,] be an ideal generated by a regular sequence of 
forms of degree d. Let S = W(I) be the standard bigraded Rees algebra of I. Then 

0) 
(ii) 

(iii) 

H.,(u) = C~&i(-l)‘(“-‘,d_+~-l) (V_:) (“+i-‘) for u 2 0. 

e(Sd) = CiIi d’(“T’). 

Proof. (i) Any element f E J* with deg f = (ao, al,. . . , a,) is of the form f Tf’ . . . T,” 

with f E (Ij),, for some element j = 2,. . . , r with aj # 0. Since Ij is an increasing 

sequence of ideals, setting I(al,. . . ,a,)1 := max{jl aj # 0}, one has 

(J*) (a041 ,..., a,) = ($a ,)..., a,)l)aJ? . . . v’. 

Therefore, the Hilbert function of gr p(S) as a N’+‘-graded algebra is given by 

f&,(s)(ao,al , . . . , a,) = HRII,(,,. ,o,j, (a01 

where R := k[X]. From this, one gets the Hilbert function of grs(S) as a bigraded 

algebra: 

where the latter equality follows from the fact that the number of vectors (al,. . . ,a,) 

such that al + . . . + a, = u and I(al ,. . .,ar)l = j is given by (“~~~“). Since Ij is 

generated by a regular sequence of j - 1 forms of degree d, one has 

j-l 

HR,~,(u)=C(-~)~ jyl 

i=O ( ) 

Hn(U-id)=~(-l)‘(i;‘)(‘-~~;-‘). 
i=O 

It follows that 

r-1 

= c ).( (-1 l 

i=O 
u-i~i;‘)j~,(ir’)(u~~r2) 

i--l 

= cc- ).( 1 ’ 
i=O 

“-~~;-‘)i~,(:‘:~:)(u+:-l) 

r-1 

= (-1)’ c ( i=O 

U-l,“‘r-‘>(:+:z:>(u+I-l)_ 
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Since &(u,u) = Hs,,(s)(u,u) and Hsd(u) = Hs(u,u), setting u = u in the above 

formula yields the desired formula for Hsd(u). 
(ii) Note that dim R/Ij = n - j + 1 and e(R/Ij) = dj-’ . Then one has 

dj-’ 

HW,(“) = (n _ j)! 
~z.Fj + terms of lower degree. 

It follows that 

r 

=x dj-1 

jzl (n - jY(j - l>! 
zf-j~j-~ + terms of degree < n - 1. 

In the notation of Subsection 2.2, this means that 

es(j,n -j - 1) = 
d”-j-’ ifn-r<j<n-1, 

0 ifO<j<n-r-1. 

Then, by Proposition 2.3, 

= j~.dn-j-‘~;‘) =gdf;‘). 

(iii) The Hilbert series is now straightforward to obtain: 

Theorem 3.7. Let I = (fi,. . . ,fr) c k[Xl,. . . ,X,] be an ideal generated by a regular 

sequence of r forms of degree d. Let S = W(I) be the standard bigraded Rees algebra 
of I. Then: 

(i) SA is a Cohen-Macaulay ring if (r - l)d<n. 
(ii) Sb is not a Cohen-Macaulay ring if (Y - 1)d z=-n. 

Proof. (i) If r = n, the condition (r - 1 )d < n implies d = 1. In this case, 

I = (Xl, . . . ,X,). Then S, =k[12] is isomorphic to the coordinate ring of the Veronese 

embedding of IF’“-’ in P(“:‘)-‘, which is known to be Cohen-Macaulay. 
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Let Y < IZ. By Corollary 2.7, Sd is Cohen-Macaulay if grq(S)d = AdI( is 

Cohen-Macaulay. Recall that J* = (ZzT2 , . . . ,I,T,) with 1j = (fi,. . .,fj_,),j = 1,. . .,Y. 

Set 

Qj =(Zj,Tj+l,...,Tr) 

with the proviso Zs = 0 and T,.+i = 0. It is easily seen that J” = fly=, Qj (cf. [14]). 

Passing to the diagonal gives 

(J*)A = ,b, (Qj>d. 

It suffices to show that this decomposition satisfies the conditions of Lemma 2.8. As 

pointed out in Subsection 2.3, AAl( N k[X]/Zj&k[T]/(Tj+l,. . . , T,), which is the 

Segre product of two homogeneous complete intersections. Since Ii = 0, Ad/(Ql)d N 

~[X]C@[TI] SL k[X]. If j > 1, the complete intersections have dimension 2 2 (one 

needs Y < n for j = r). In [23, Corollary 11, Stiickrad and Vogel already gave a 

criterion for the Cohen-Macaulayness of such a Segre product in terms of the degrees 

of the generators of the complete intersections. Applying this criterion it is easy to 

check that Ad/(Qj)d is Cohen-Macaulay if (j - l)d < n - 1. By Example 2.4 we have 

dim AAl( = dim k[X]/(ft,. . .,fj_,) + dim k[T]/(Z”+l,. . . , T,.) - 1 

=(n-j+l)+j-l=n. 

It remains to show that Ad/((Ql )A n . . n (Qj)d + (Qj+l )A ) is a Cohen-Macaulay ring 

with dimension n- 1 forj= l,...,r- 1. Since 

Q, n... nQj+Qj+l =(zj+l,Tj+l,...,Tr), 

this can be proved similarly as above. 

(ii) As is well-known, in order to show that S, is not Cohen-Macaulay, it suffices to 

detect a negative coefficient in the h-vector of S4, i.e., in the numerator of the Hilbert 

series Ps,(z) = h(z)/( 1 - z)“, h( 1) # 0. 

Now, Theorem 3.6 (iii) yields 

h(z) = 1 + 2 z 
j=2 (j - l)! hj(z), 

where 

hj(Z) := (1 -Zjng 

[ 

z~-2(1 _ Zd)j-I 

(1 -z)n I . 

Let us compute the coefficients of ~(‘-t)~ and z(‘-‘)~-’ in h(z). If (r - 1)d > n, then 

d 2 2 and r 2 2. Now, deg(hj(z)) 5 (j - 1)d - 1 for every j = 2,. . . ,r. Therefore 

these integers coincide with the coefficients of z(‘-‘)~-’ and z(‘-‘)~-~ in h,.(z), divided 

by (Y - l)!. 



Let a :=r-2+(r- l)d-n; it is easy to see that 

s(z ) := 
zr-2(1 _ Zd)r--l 

(1 -z)” 
+ (-l)‘_“(z” + nza-‘) 
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has degree 5 a - 2. Hence one can write 

zr-2(1 _Zd)r-l 

(1 -z)” 
= (-l)r-,+‘(z= + nza-‘) + g(z), 

where g(z) has degree < a - 2. It follows that 

h,(z) = (-l)r--n+l(l - z)“[a. ..(a - r + 2)zn-‘+t + n(a - 1). . . (a - r + l)za-‘1 

+ terms of degree < n + a - r. 

It follows that the coefficient of z(‘-‘)~-~ = za--ril+n is 

(-l)‘+‘a(a- l)...(a-r+2), 

while that of z(r-l)d-2 = za-r+n is 

(-l)‘+‘[n(a- l)...(a-r+ l)-na...(a-r+2)] 

=(-l)‘n(r- l)(a- l)...(a-r+2). 

Since (Y - 1)d > IZ, one has Y > 2 and a > r - 2. Hence, if Y is even 

(-l)‘+‘a(a- l)...(a-r+2) < 0; 

if r is odd 

(-l)‘n(a- l)...(a-r+2)(r- 1) < 0. 0 

Remark 3.8. The inequality (Y - 1)d < II is not a necessary condition for the Cohen- 

Macaulayness of Sd. In fact, one guesses that S4 is Cohen-Macaulay if and only if 

(r - 1)d < n, which is indeed the case for Y = 2 and n 5 3 (see Proposition 3.10 (4) 

below). 

Remark 3.9. If I as above is a radical ideal generated by a regular sequence of r 

forms of the same degree, then S4 is a normal domain. This is a consequence of 

Corollary 2.11 plus the well-known fact that the Rees algebra of a radical normally 

torsion-free ideal is normal. 

We illustrate the above results in the case Y = 2. The diagonal subalgebras in this 

case include the coordinate rings of some rational surfaces in P5, obtained as the 

embedding of the blowup of P2 at the points of intersection of two plane curves of 

the same degree d by the linear system of forms of degree d + 1 on P2 vanishing at 

these points (cf. [lo]). 
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Proposition 3.10. Let I = (fi, f2) c k[X] = k[xl,. . .,X,] be an ideal generated by a 
regular sequence of 2 forms of degree d. Let S = 9(I) be the standard bigraded 

Rees algebra of I. Then: 
(1) S, N k[U]/9 where U = (U,) is a n x 2 matrix of indeterminates and 9 is the 

ideal minimally generated by the (!$ 2- minors of U and d forms of degree d. 

(2) The Hilbert function of SA is given by 

HsJu)=(~+l)(~;~;~) -f-f:;-‘). 
Moreover, dim Sb = n and e(S4 ) = 1 + d(n - 1). Further, the Hilbert series of S, is 

R&(Z) = 
1 + nz + . . + rzzd-’ + (n - d)zd 

(1 -z) 

and, tf n = 3, we have 

(compare with [lo, Proposition V.l]). 

(3) SA is a Cohen-Macaulay ring tfd < n and not tf d > n (See also (4) below 

for the cases n = 2,3, where SA is Cohen-Macaulay for d = n). 
(4) Let n = 2 (resp. n = 3). Then k[U]/ 5% is the coordinate ring of a curve C (resp. 

a surface V) of degree d + 1 (resp. 2d + 1) in P3 (resp. in P5) and the structure 
sheaves admit the following free resolutions as Op-modules, respectively: 

0 -+ 0,3(-d - 2)d-2 -+ 0,3(-d - 1)2(d-1) + O&-2) $ O,y(-d)d 

+ co,3 -+ Lo, -+ 0. 

and 

0 4 OPs(-d - 3)d-3 + Co&-d - 2)3(d-2) + &~(-3)~ @ O&-d - 1)3(d-‘) 

+ S,S(-~)~ &I O,,(-d)d ---f OPs ---f OV + 0. 

Proof. ( 1) This follows from the general description given before. The d forms of 

degree d can be explicitely described as follows: Consider the d elements (fi Tz - 

fzTl)T:‘T,OZ, al + a2 = d - 1, and take a set of preimages of these under the map 

Uij +_&Tj (compare with [lo, Theorem V.21). 

(2) This follows from Theorem 3.6. 

(3) This follows from Theorem 3.7. 

(4) By part (l), C is a divisor on a quadric W which is defined by the determinant of 

the matrix U. The resolution of 0~ as an &+-module being well-known, the mapping 

cone of the morphism of complexes given by the embedding Lo&-C) -+ 0~ (see 

[21]), yields the above resolution of 0~ as an 0 r~-module. By looking at the Hilbert 

function of 0~ = S, or by a direct computation, one sees that the resolution is minimal. 
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For n = 3, one considers k[U]/S as the coordinate ring of a surface V of degree 

2d + 1 in P5, which is a divisor on the rational normal scroll T defined by the ideal 

12(U). It is known that 

Pit(T) = ZH @ ZR, 

where H is the hyperplane class and R is the ruling. Further the following equality 

holds in Pie(T) : 

V=dH-(d-l)R. 

From this, as above, one derives a minimal free resolution of 0~ as an COPS-module 

as stated. In the case where I is the ideal of a set of points in P2 obtained as the 

complete intersection of two curves of degree d, this has been proved by Holay [ 181. 

As a consequence of the above minimal resolutions, if n = 2,3, s4 is Cohen- 

Macaulay if and only if d 5 n (cf. [lo]). 0 

3.3. Determinantal ideals 

This part concerns algebras with straightening law. For the relevant notation and 

definitions regarding this subject, we refer to [5, 61 (see also [4]). As usual, if R is 

a graded k-algebra with straightening law on a finite poset ll generating R, then one 

identifies the elements of II with the corresponding elements of R indexed by them. 

In particular, an element of II has a certain degree if the corresponding homogeneous 

element of R has that degree. 

We first state a particular case of [20, Theorem 1.41 in the form that suits us best. 

Proposition 3.11. Let R be a graded k-algebra with straightening law on a finite 

poset Il. Let Sz c Il be a straightening closed poset ideal and let 01,. . .,wr be a 
linearization of the elements of Q, all assumed to be of the same degree. If I = CIR 
andJcR[T] = R[T,,..., Tr] denotes the presentation ideal of the Rees algebra B(I), 
then 

where J* is the ideal generated by the initial forms of the elements of J with respect 

to the lexicographic term order on R[T]. 

In the above statement, for an element n E II, II* = (0 E II 1 CJ 2 TC} (the ideal 

cogenerated by n), while the symbol $ indicates incomparability relation. 

Corollary 3.12. With the notation of Proposition 3.11, if besides R = k[X], one has 
(i) J* = nJ=,Qj, where Qj = (IF’JR, Tk,Tj,Tj, (wk $ Oj, Oj, < Oj, Wjz < Wj, 

wjl $ Oj2). 

(ii) k[X, T]/Qj N k[X]/IIOjR@kk[Aj], where Aj denotes the order simplicial complex 

of the subposet IZ, U {Oj} = {CJ E Ill o 5 CJ~}. 
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Proof, The proof is the same as in [20, Proof of Theorem 2.21, if one observes that 

here (0 : 01) = (0). 0 

Here is the main result of this portion which gives a template for straightening closed 

ideals. 

Theorem 3.13. Let R = k[X] (with the standard gradation) admit a structure of 

monotonely graded algebra with straightening law on an upper semimoduiar semi- 
lattice Il and let Q c Il be a straightening closed ideal such that rankIZ\s2 2 2 and 

all elements of s1 have the same degree. Then the diagonal subalgebra of the bigraded 

Rees algebra W(s2R) is Cohen-Macaulay. 

Proof. We invoke the same strategy as the one in Subsection 2.3 (cf. also the proof 

of Theorem 3.7). 

Let oi, . , w, be a linearization of the elements of Q and choose presentation vari- 

ables T as in Proposition 3.11. Using the explicit decomposition of Corollary 3.12 

and the notation there, we first claim that Ad/(@)4 is Cohen-Macaulay for every 

1 < j 5 Y, where A = k[X,T]. Indeed, by part (ii) of that corollary, we are to show 

that the Segre product R/‘IZWIRsk[Aj] is Cohen-Macaulay. 

Let us first argue that R/IPJR and k[Aj] are Cohen-Macaulay. For the first, one 

observes that it is a graded algebra with straightening law on the poset Il\ZI“+ since 

noi is an ideal of ZI. Moreover, the assumptions certainly imply that ZZ is locally 

upper semimodular. Since ZI\ZY 1 has a unique minimal element, it follows that it is 

locally upper semimodular too [6, (5.13) (a)]. Therefore, R/IWR is Cohen-Macaulay 

[o, (5.14)1. 
As for k[Aj], it suffices by [2] to show that the poset IT, U {Wj} is locally upper 

semimodular. Thus, let nl, 712 E IZw, U {uj} be covers of 0 E ZIw, U {Oj} and let r E 

Zl,U{wj} be such that r > rci, r > 7~2. Since n is assumed to be an upper semimodular 

semi-lattice, ‘ill LI 7cz is a common cover of 7~1 and 7~2 and, clearly, ~1 u 7~2 5 r, hence 

rti U 7~2 E no, U {Oj}, as required. 

According to [23, Theorem], the Segre product R/IIWJR&k[Aj] is Cohen-Macaulay 

if p(k[Aj]) 5 t(R/ZP~R) and p(R/IPR) I z((k[Ai]), where p(G) and t(G) denote, 

respectively, the Hilbert function regularity index and the initial degree of the standard 

graded k-algebra G. It is well known that the face ring of a simplicial complex has 

regularity index 0, hence the first inequality is trivially verified. As to the second 

inequality, by [4, Theorem 1 .l and Corollary 1.3 (a)] we have that the a-invariant of 

R/IIPR is negative. Therefore, by the well-known relation between the two invariants, 

we deduce that p(R/lWR) 5 0 ( = l(k[Aj]) ). 
We are thus left with the low dimensional cases of R/ZZW~R or dim k[Aj]. The latter 

could only happen if the elements 01,. . . , Wj were all mutually incomparable, but this 

is impossible because of the straightening law and the fact that R has no proper zero 

divisors. As to the former, one has 

dim R/IPR = rank II- rank E”J > rank IZ - rank Q 2 2, 
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by assumption, so it can not take place either. This completes the proof that the Segre 

product of R/IPR and k[Aj] is Cohen-Macaulay. 

We next deal with the Cohen-Macaulayness of Qi n . . . n Qj + Qj+,. A moment’s 

reflexion yields that this ideal is generated by IP’j+i, Tk, Tj, Tj2 with ok -$ Oj+i, 

mj, $ aj2’ wj, < oj+i, mjz < mj+i. It follows that A~/((&?I)A n...n(Qj)d +<Qj+l)~) 
is isomorphic to the Segre product of RjlP I I+ R and the face ring of the order complex 

of KO,, , U {Wj+l }. Therefore, we are back to the same situation as above, hence this 

ring is Cohen-Macaulay. 

Thus, AdI( is Cohen-Macaulay by Lemma 2.8. 0 

Corollary 3.14. Let X = (x7) denote a matrix of indeterminants over the field k, 

let R = k[X] and let I c R denote the ideal generated by the maximal minors of X. 

Then the diagonal subalgebra k[(X)Id] of the standard bigraded Rees algebra 9(I) 
is a Cohen-Macaulay normal domain. 

Proof. Let II denote the poset of all minors of X and let Sz c I7 denote the ideal of 

all maximal minors of X. Say, X is a d x c matrix with d < c. If d = 1 then 9$?(1)~ 

is isomorphic to the k-subalgebra of k[X] generated by the monomials of degree 2 

in the variables X. This is well known to be Cohen-Macaulay (e.g., because it is 

normal). Thus, we may assume that d 2 2. In this case, it is easy to check that 

rank II \ Sz 2 2. Furthermore, it is well known that R = k[X] has a structure of algebra 

with straightening law on n satisfying the hypotheses of Theorem 3.13 (n is actually 

a distributive lattice [6]) and s2 is a straightening closed ideal for this structure (see 

[5, 61). This proves the Cohen-Macaulayness of the diagonal subalgebra of B?(Z). Its 

normality follows, by Corollary 2.11, from the fact that W(I) is normal [5]. 0 
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